Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation.

نویسندگان

  • J K Locker
  • J K Rose
  • M C Horzinek
  • P J Rottier
چکیده

The M protein of mouse hepatitis virus strain A59 is a triple-spanning membrane protein which assembles with an uncleaved internal signal sequence, adopting an NexoCcyt orientation. To study the insertion mechanism of this protein, domains potentially involved in topogenesis were deleted and the effects analyzed in topogenesis were deleted and the effects analyzed in several ways. Mutant proteins were synthesized in a cell-free translation system in the presence of microsomal membranes, and their integration and topology were determined by alkaline extraction and by protease-protection experiments. By expression in COS-1 and Madin-Darby canine kidney-II cells, the topology of the mutant proteins was also analyzed in vivo. Glycosylation was used as a biochemical marker to assess the disposition of the NH2 terminus. An indirect immunofluorescence assay on semi-intact Madin-Darby canine kidney-II cells using domain-specific antibodies served to identify the cytoplasmically exposed domains. The results show that each membrane-spanning domain acts independently as an insertion and anchor signal and adopts an intrinsic preferred orientation in the lipid bilayer which corresponds to the disposition of the transmembrane domain in the wild-type assembled protein. These observations provide further insight into the mechanism of membrane integration of multispanning proteins. A model for the insertion of the coronavirus M protein is proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region

The E1 glycoprotein of the avian coronavirus infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membrane-spanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membrane-...

متن کامل

Assembly of the coronavirus envelope: homotypic interactions between the M proteins.

The viral membrane proteins M and E are the minimal requirements for the budding of coronavirus particles. Since the E protein occurs in particles only in trace amounts, the lateral interactions between the M proteins apparently generate the major driving force for envelope formation. By using coimmunoprecipitation and envelope incorporation assays, we provide extensive evidence for the existen...

متن کامل

Co-operation between different targeting pathways during integration of a membrane protein

Membrane protein assembly is a fundamental process in all cells. The membrane-bound Rieske iron-sulfur protein is an essential component of the cytochrome bc(1) and cytochrome b(6)f complexes, and it is exported across the energy-coupling membranes of bacteria and plants in a folded conformation by the twin arginine protein transport pathway (Tat) transport pathway. Although the Rieske protein ...

متن کامل

Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry.

The spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for receptor binding and membrane fusion. It contains a highly conserved transmembrane domain that consists of three parts: an N-terminal tryptophan-rich domain, a central domain, and a cysteine-rich C-terminal domain. The cytoplasmic tail of S has previously been shown to be required for assembly. ...

متن کامل

Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition.

Once inserted, transmembrane segments of polytopic membrane proteins are generally considered stably oriented due to the large free energy barrier to topological reorientation of adjacent extramembrane domains. However, the topology and function of the polytopic membrane protein lactose permease of Escherichia coli are dependent on the membrane phospholipid composition, revealing topological dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 30  شماره 

صفحات  -

تاریخ انتشار 1992